Identifying Bioisosteric Fragments from Databases of Protein-Ligand Complex X-Ray Crystallographic Structures

A study submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemoinformatics

at

THE UNIVERSITY OF SHEFFIELD

by

LIZ KENNEWELL

September 2004

This project was carried out under the supervision of Dr Claude Luttmann and Dr Pierre Ducrot, and in conjunction with:
Aventis Pharma
Croix de Berny
20 Avenue Raymond Aron
F-92165 Antony Cedex
France
Table of Contents

1 Abstract .. 1

2 Introduction .. 2
 2.1 Aims of the project .. 2
 2.2 Outline of the report .. 3
 2.3 Acknowledgments ... 4

3 Background .. 5
 3.1 Bioisosterism .. 5
 3.1.1 Bioisosteric replacement .. 5
 3.1.2 Types of bioisosteric replacements ... 7
 3.1.3 Examples of bioisosteric replacements in drug design 8
 3.2 Protein-ligand binding ... 12
 3.2.1 Hydrogen bonds (H-bonds) ... 12
 3.2.2 Ionic bonds ... 13
 3.2.3 Van der Waals interactions .. 14
 3.2.4 Ion- dipole and dipole-dipole interactions .. 14
 3.2.5 Hydrophobic interactions ... 14
 3.3 Databases ... 14
 3.3.1 Protein Data Bank (PDB) .. 15
 3.3.2 Cambridge Structural Database (CSD) ... 16
 3.3.3 IsoStar ... 16
 3.3.4 SuperStar database ... 20
 3.3.5 BIOSTER database ... 20
 3.3.6 ReliBase+ ... 21
 3.4 Calculating similarities between functional groups 21
 3.5 Identifying common chemical replacements in drug-like compounds 23
 3.6 Conclusion ... 24

4 Methodology ... 25
 4.1 Overall methodology ... 25
 4.2 Software and programming languages used ... 26
 4.2.1 MOE ... 26
 4.2.2 Scientific Vector Language (SVL) .. 26
 4.3 Ligand Dataset .. 27
 4.4 Splitting the ligands into fragments ... 28
 4.4.1 Splitting Molecule function .. 28
1 Abstract

Bioisosteres are defined as functional groups or atoms that are structurally different but can form similar intermolecular interactions therefore still retaining biological activity. Bioisosteres have an important role in the lead generation or optimisation stages of drug design as bioisosteric replacements can be utilised to address issues such as solubility, ADME and toxicity problems. The aim of this project is to identify potential bioisosteres that exist within a set of aligned ligands for a particular protein target. Rather than determining potential bioisosteric fragments via observed activity data, this project will aim to identify possible bioisosteric fragments via structural data. All the ligands within one dataset bind to the same protein thus ensuring they all have similar activity for the same target.

A function was written in SVL (Scientific Vector Language), as the function will run using the MOE software, to automate this process. Pairs of ligands, extracted from the same dataset, are compared to each other to identify fragments within the ligands which occupy a similar space within the ligand. The fragments are identified by comparing the volume overlap between the two ligands. Fragments with a high degree of overlap will occupy a similar position within the protein’s active site and hence are assumed to have a similar role within the ligand. The fragments do not necessarily have to be involved in intermolecular binding but can play other important roles such as linker or scaffold roles.

The concept of identifying potential bioisosteres via structural data has been shown to work as fragment pairs that occupy the same space within a pair of aligned ligands have been identified. The function developed within this project can be applied to sets of different ligands and can be run against both external and internal ligand datasets. These identified bioisosteric fragments would then be investigated further to determine whether they can be used to improve the properties of a lead compound.
2 Introduction

The following thesis describes the development of a method for identifying potential bioisosteric fragments within a set of ligands specific to a particular protein target. Bioisosteres have been defined as

“Functional groups or atoms that are structurally different but can form similar intermolecular interactions hence still retaining biological activity.” (Watson et al. 2001)

As bioisosteres do not change the biological activity of ligands they have an important role in the lead generation or optimisation stage of drug design. Bioisosteric replacements can be utilised to address issues such as solubility, ADME and toxicity problems.

2.1 Aims of the project

The aim of this project is to identify potential bioisosteres that exist within a set of ligands for a particular protein target. Rather than determining potential bioisosteric fragments via observed activity data, this project will aim to identify possible bioisosteric fragments via structural data. All the ligands bind to the same protein thus ensuring they all have similar activity for the same target. The identified potential bioisosteres may have different roles within the ligand and may not necessarily be directly involved intermolecular bonding. These roles may include:

- Be part of a linker group which makes no interaction with the protein but ensures the functional groups are in the right orientation to make the correct intermolecular contacts.
- Be part of the scaffold maintaining the structure of the ligand.
- Be a functional group involved in forming intermolecular interactions with the protein.

Identifying potential bioisosteres within other regions could be important as they may have an impact on other properties without having a detrimental effect on the binding affinity (as they are not involved in making intermolecular bonds).

The identified fragment pairs are only bioisosteric if they can be interchanged
within the ligands whilst maintaining a similar biological activity. As all the ligands, within a dataset, bind to the same protein target, it is assumed that they have the similar biological activity. The degree of activity between the ligands may vary even when the ligands are exerting a similar effect. Although the ligands have the same biological activity, they may differ in terms of other physiochemical properties, such as solubility, ADME (absorption, distribution, metabolism, excretion) or toxicity. Replacement of one bioisostere for another may alter one or more of these properties.

Potential bioisosteres will be identified based on structural comparisons between ligands. Additional work would then need to be undertaken to verify whether which, if any, properties of the ligand the bioisosteric replacement alters. This will determine whether the identified bioisosteric replacement could be potentially useful at a lead generation or lead optimisation stage. It is only worthwhile incorporating a bioisosteric replacement into a lead compound if it produces a desirable effect e.g. reduces the compound’s toxicity.

All the ligands, within the same dataset, bind to the same protein target so the identified bioisosteres will be specific to a particular target protein. The developed methodology can be applied to any protein target and its ligands. It may be possible to extrapolate the resulting bioisosteres to proteins within the same class but there is no reason to believe that this will be possible across different protein classes. However, it may be the case that identical, or similar, bioisosteric pairs emerge for different protein classes. If this occurs then it may be possible to make more general observations.

2.2 Outline of the report

The following thesis outlines the development of a function to identify potential bioisosteres.

The following chapter is a review of the current literature in this field and provides background information to the subject area. It details the concept behind bioisosterism and its role in the drug discovery process along with some examples. This should help explain the rationale for conducting this project. The chapter also describes some of the databases currently available which aim to assist in the
The Methodology chapter describes in detail the development of a function which was designed to identify potential bioisosteric fragments. This section includes explanations of how the ligands were compared in order to identify any potential bioisosteres existing between them and also the criteria used to define the fragment pairs.

The Results chapter of the report shows some examples of the fragment pairs identified from publicly available protein databases. The function was also run on internal protein-ligand databases but due to confidentiality reasons, these results are not shown within this report.

Finally the conclusions drawn from the project are discussed along with how the developed function can be taken forward.

2.3 Acknowledgments

This project was carried out in conjunction with Aventis Pharma, Paris. I would like to thank the Chemoinformatics team at Aventis for all their help during my time there. I would especially like to thank Dr Pierre Ducrot and Dr Claude Luttmann, my supervisors whilst at Aventis, for all their help, ideas and advice.

I would also like to thank Prof Peter Willet, my Sheffield supervisor, for his advice and guidance given whilst undertaking this dissertation.
3 Background

The following chapter describes the background to the subject area and details the concept behind bioisosterism. It highlights the important role of bioisosterism within the drug discovery process, along with some examples, and hence the rationale for carrying out the following project. There is also a review of some studies which have looked at methods for identifying bioisosteres. There is also a description of the currently available databases which aim to assist in the identification of bioisosteres.

3.1 Bioisosterism

Friedman introduced the concept of bioisosterism in 1951 and defined bioisosteres as molecules or functional groups which have similar chemical and physical properties and hence similar biological activity (Watson et al. 2001).

Since then, the growth of crystallographic data has lead to a greater understanding of the nature of intermolecular interactions between molecules (e.g. proteins and their ligands). This has lead to the bioisostere definition being extended to include functional groups or atoms that are structurally different but can form similar intermolecular interactions but again still retaining biological activity. (Watson et al. 2001).

3.1.1 Bioisosteric replacement

The concept of bioisosterism is an important approach in drug design as it is envisaged that functional groups within a lead compound may be interchanged with a bioisosteric functional group and still preserve biological activity. The rationale being that the modified compound could possess more desirable chemical or physical properties than the original molecule while retaining biological activity against the same target (Patani & LaVoie 1996). Therefore during the lead optimisation stage, bioisosteric replacements can be used in an attempt to optimise desirable properties or minimise adverse ones. In order to retain biological activity, bioisosteric groups must also be similar in some important physical property e.g. size, ability to form intermolecular interactions.
Conducting bioisosteric replacements will alter one or more properties of the molecule such as size, partition coefficient (logP), logD, pKa, reactivity, solubility, metabolism or binding properties whilst maintaining biological activity. Different bioisosteric replacements will lead to varying alterations in the molecule’s properties depending on what role the modified group has within the molecule. The degree to which the property is changed, which could be an improvement or reduction, will also vary between bioisosteric replacements.

A modified group may have one, or several, roles within a molecule including (Vyvyan 2004):

- structural role – e.g. as a linker group ensuring the functional groups within a molecule are positioned correctly to make the necessary intermolecular interactions.
- receptor interactions – e.g. forming non-bonded interactions with a protein target
- pharmacokinetic role – e.g. affecting the logP and logD value
- metabolism – affecting the metabolism of the molecule and hence possibly affecting its duration of activity
- toxicity – affecting the toxicity of the molecule

A bioisosteric replacement may affect more than one property of the molecule which could be advantageous in the lead optimisation stage.

Bioisosteric replacement could take place within scaffold regions of molecules. Scaffold regions within a ligand position the substituents so they can make favourable interactions with residues in a protein binding site (Bohl et al. 2002). Any replacements within a scaffold region must ensure that the relevant substituents can be positioned correctly to form the appropriate intermolecular bonds.

Developing novel compounds with drug-like features which are also patentable is becoming increasing challenging especially for extensively researched and validated drug targets (Showell & Mills 2003). As the number of me-too compounds increases, the issue of discovering novel compounds will become even more important. Bioisosteric replacements may help to discover new classes of
compounds with no current patent coverage which is an obvious benefit in the drug design process.

3.1.2 Types of bioisosteric replacements

Bioisosteres can be classified as either classical or nonclassical (Patani & LaVoie 1996). Classical bioisosteres are defined using Grimm’s Hydride Displacement Law in which the bioisosteric groups have the same number of valance electrons and Erlenmeyer’s definition in which the atoms, ions or molecules have identical peripheral layers of electrons (Patani & LaVoie 1996, Vyvyan 2004).

The classical bioisostere group is commonly divided into several discrete categories – monovalent atoms or groups, divalent atoms or groups, trivalent atoms or groups, tetrasubstituted atoms and ring equivalents (Patani & LaVoie 1996).

Chlorine is used as bioisosteric replacement for hydrogen or methyl groups as it can alter a molecule’s metabolism. In the case of Phenobarbital, replacement of the hydrogen at the para position with chlorine prevents its metabolism to a glucuronide conjugate. The substituted chlorine atom blocks the Phenobarbital’s metabolism hence increasing its duration of action (Patani & LaVoie 1996).

The other major group of bioisosteres are classified as non-classical. They differ from classical bioisosteres, in that they do not have the same number of atoms, steric or valence electrons but produce a similar biological activity. Non-classical bioisosteres retain the spatial arrangement, electronic properties or some other physiochemical property that is crucial in retaining biological activity (Patani & LaVoie 1996). The growth in the number of molecules and protein-ligand complexes whose structures have been determined by crystallographic techniques has assisted in the identification of nonclassical bioisosteres.

As with classical bioisosteres, non-classical bioisosteres can be subdivided into groups: rings versus noncyclic structures and exchangeable groups.
3.1.3 Examples of bioisosteric replacements in drug design

The previous section has described the theory behind bioisosterism and how it can be a powerful tool for medicinal chemists when developing novel compounds. The following section describes just a few examples of where bioisosterism has been utilised in the drug design process to provide leads for improving existing compounds.

3.1.3.1 Bioisosteres of endothelin antagonists

Endothelins are potent endogenous peptide vasoconstrictors and mitogens. Research has looked into the development of endothelin receptor antagonists which could potentially help to treat diseases with a significant vasoconstrictive or proliferative component. Many antagonists have been discovered which are structurally diverse and have varying degrees of potency and subtype selectivity (Mederski et al. 1998). One similarity between the majority of the determined structures that have been identified is that they all contain a methylendioxyphenyl group: a group commonly found in medicinal compounds.

Mederski et al. (1998) tested a previous hypothesis which stated that a benzothiadiazole group was a suitable bioisostere for the methylendioxyphenyl group (see Figure 3.1-1 for structure diagrams of these groups). This bioisostere was identified, in a previous study, through comparing physicochemical properties using a Kohonen neural network. The current study looked at six structures, and created six new molecules in which a methylendioxyphenyl group was replaced with a benzodioxole or a benzothiadiazole group (see Figure 3.1-2 below). The twelve structures were then tested for their ability to specifically inhibit binding to several receptor sites. The results showed that the benzothiadiazole derivatives showed improved binding affinities for one of the receptors tested.

Figure 3.1-1 – methylendioxyphenyl and benzothiadiazole groups
The study concluded that a benzothiadiazole group might be a bioisoster of methylendioxyphenyl group when looking at endothelin receptor antagonists. The authors argue that benzothiadiazole has a more pronounced electron withdrawing character than methylendioxyphenyl and hence leads to differences in binding affinity (in this case improvement). These findings could be used to help develop novel endothelin receptor antagonists with more potent binding affinity and hence greater efficacy.

As methylendioxyphenyl groups are common in medicinal compounds, could this bioisosteric replacement be advantageous in other drug compounds?

3.1.3.2 Silicon isosteres

Showell & Mills (2003) looked at the less common replacement of silicon for a fully substituted sp3 carbon. In 2001, less than 1% of patent applications related to compounds containing phosphorous, silicon and other less common elements in the drug discovery field (Showell & Mills 2003). Although both carbon and silicon
contain four valence electrons, the two elements differ significantly in a number of physiochemical properties, an example being the difference in molecular size and shape. Silicon-containing bonds are always longer than equivalent carbon-containing bonds. This difference leads to changes in the size and shape of silicon containing compounds compared to equivalent carbon containing compounds. These changes could potentially alter the nature of the interactions (and hence potential biological activity) a silicon-containing compounds makes with a target protein compared to the analogous carbon-containing molecule. Even though the silicon containing compounds are likely to be larger this could enhance ligand binding.

As well as the potential for improving biological activity, the study also highlighted some potential limitations, such as increased lipophilicity and concerns regarding toxicity of silicon-containing compounds. The authors present research which suggests, contrary to popular opinion, that there is no systematic toxic liability with silicon in chemically stable molecules. There are currently no silicon-containing drugs approved in the US or Europe but the authors conclude that introducing silicon isosteres at the lead optimisation stage could generate several advantages such as altered efficacy, improved selectivity and, importantly, patentability of the molecule.

3.1.3.3 Bioisosteric replacements in celecoxib

The following example shows how bioisosteric replacements can be utilised within an identified pharmacophore to enhance binding affinity of a compound.

When launched, Celecoxib (Celebrex) provided significant benefits for the treatment of rheumatoid arthritis and osteoarthritis over previously available non-steroidal anti-inflammatory drugs (NSAIDs) (see Figure 3.1-3 for the structure of celecoxib). Celecoxib’s main advantage lies in its ability to selectively inhibit the enzyme, cylooxygenase (COX-2) rather than both COX-1 and COX-2 as is the case with traditional NSAIDs. This selectivity leads to an improved side-effect profile for celecoxib especially regarding gastrointestinal toxicity.
Figure 3.1-3 Celecoxib (Celebrex)

\[
\begin{align*}
& \text{In celecoxib} \\
&R^1 = H \\
&R^2 = \text{SO}_2\text{NH}_2 \\
&R^3 = H
\end{align*}
\]

A SO$_2$NH$_2$ pharmacophore identified in celecoxib is thought to interact with the secondary binding pocket of the COX-2 binding site which is not present in COX-1 (hence explaining its selectivity). Uddin et al. (2003) created analogues of celecoxib by carrying out bioisosteric replacements of sulphonamide with sulfonylazide at various positions in the N$_1$-phenyl ring (See Table 3-1).

Table 3-1 – Analogues of celecoxib

<table>
<thead>
<tr>
<th>Analogue</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>SO$_2$N$_3$</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>SO$_2$N$_3$</td>
</tr>
<tr>
<td>3</td>
<td>SO$_2$NH$_3$</td>
<td>SO$_2$NH$_2$</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>SO$_2$NH$_2$</td>
<td>H</td>
</tr>
</tbody>
</table>

The bioisostere sulfonylazide (SO$_2$N$_3$) has the potential to form dual hydrogen bonding (similar to SO$_2$NH$_2$ via the sulfonyl oxygens) but also has the potential to form an additional ionic bond with amino acid residues within COX-2’s specific secondary binding site. The analogues were tested for selectivity in inhibiting COX-2 and docking studies were also carried out to establish the interactions.

Not all of the analogues exhibited COX-2 selective inhibition hence offering no advantage over celecoxib, highlighting the importance of the position of the bioisosteric replacement in exerting its effect. The analogue which exhibited the most potent and selective COX-2 inhibition was a bioisosteric replacement at the meta position of the N$_1$-phenyl ring (See Figure 3.1-4 and analogue 2 in Table 3-1). Docking studies showed that this analogue was forming both hydrogen-bonds (via one of its SO$_2$ oxygen atoms) and also an additional ionic bond with the guanidine NH$_2$ group of Arg513. The study concluded that the new analogue is a potentially
novel dual hydrogen-bonding/ionic bonding pharmacophore for the design of potent COX-2 inhibitors.

Figure 3.1-4 – Most potent analogue

![In analogue](image)

\[
\begin{align*}
R^1 &= H \\
R^2 &= H \\
R^3 &= \text{SO}_2\text{NH}_3
\end{align*}
\]

3.2 Protein-ligand binding

Non-bonded interactions are crucial in driving binding of a ligand to a protein’s active site. When a ligand binds to a protein, water molecules are expelled and the functional groups of the ligand form non-bonded interactions with the functional groups contained within the protein’s active site.

Understanding the nature of these non-bonded interactions and how they determine the specificity of a ligand for a particular protein active site is vitally important in helping to design new drug molecules. A new drug molecule will have to compete with the protein’s natural ligand for binding to the protein’s active site. It, therefore, needs to form favourable interactions within the active site to overcome this competition and exert a pharmacological effect.

Non-bonding interactions can be determined in several ways – spectroscopic methods such as NMR, theoretical methods such as IMPT (intermolecular perturbation theory) or crystallographical methods such as X-ray crystallography. Non-bonded interactions present within protein ligand complexes are described below.

3.2.1 Hydrogen bonds (H-bonds)

Hydrogen bonds are formed when a hydrogen atom is shared between two atoms, an electronegative donor atom (e.g. O, N, S) and a basic acceptor atom (e.g. carbonyl oxygen). The most important hydrogen bonds are those involving the
oxygen and nitrogen atoms of the carboxyl, hydroxyl, carbonyl, amino, imino and amido groups. These bonds are responsible for maintaining the tertiary structure of proteins and nucleic acids, as well as the binding of many drugs (Andrews & Tintelnot 1990). In proteins, most hydrogen donor and acceptor groups are found in the peptide backbone.

Different hydrogen bonds have different lengths and energies depending on the nature of the donor and acceptor atoms (Stryer 1988). Hydrogen bonds are stronger than van der Waals bonds but are much weaker than covalent bonds. Hydrogen bonds are highly directional and are thought to be responsible for the specificity of receptor sites. The strongest hydrogen bonds are formed when the donor, hydrogen and acceptor atoms are collinear. Figure 3.2-1 shows how cyclic AMP binds to a protein's active site via several hydrogen bonds.

Figure 3.2-1 – Cyclic AMP binding to a protein’s binding site (Alberts et al. 1998)

3.2.2 Ionic bonds

Ionic bonds are much less common than hydrogen bonds in protein-ligand complexes. Ionic bonds form between oppositely charged groups, for example a protonated arginine on a protein could form an ionic bond with a carboxylate or phosphate group on a ligand (Andrews & Tintelnot 1990). Ionic bonds are the strongest of non-bonded interactions and the distance between the two oppositely charged groups in an optimal electrostatic attraction is 2.8Å.
3.2.3 Van der Waals interactions

The basis of a van der Waals interaction is that the distribution of electronic density around atoms changes over time. An asymmetrical electronic density around one atom encourages a similar asymmetry in the electronic density in a neighbouring atom. The resulting attraction between a pair of atoms increases as they get closer until it reaches a maximum when they are separated by the van der Waals contact distance (Stryer 1987).

van der Waals interactions are weaker than hydrogen and ionic bonds. These interactions only become significant when numerous atoms in one of a pair of molecules can simultaneously come close to many atoms of the other molecule (which can be the case when a ligand binds to a protein) (Stryer 1987).

3.2.4 Ion- dipole and dipole-dipole interactions

These interactions are formed when permanent dipoles interact favourably with other permanent dipoles or ions. A partial negative charge on one molecule is electrostatically attracted to the partial negative charge on another molecule. The most common dipole in proteins is formed by the amide linkage.

3.2.5 Hydrophobic interactions

Another important effect which should be taken into consideration when analysing protein-ligand interactions is hydrophobic interactions. Hydrophobic interactions are formed when a ligand and a protein approach each other and water is extruded from the space between them. These interactions are entropy driven, if expelling water results in an increase in entropy then there is a resulting decrease in energy. These interactions are particularly important in non-covalent intermolecular interactions in aqueous solution (Andrews & Tintelnot 1990).

3.3 Databases

Several databases exist which contain information regarding intermolecular
interactions. This information can be used to gain an understanding of the nature of these interactions and how they can be manipulated in order to develop novel drug compounds. They can also be used to help identify potential bioisosteres within ligands.

3.3.1 Protein Data Bank (PDB)

The Protein Data Bank (PDB) was established in 1971 by the Brookhaven National Laboratories and is an archive of structural data for biological macromolecules (Berman et al. 2000). The vast majority (~90%) of the structures depict protein, viruses or peptide molecules with the remaining structures being nucleic acid, protein/nucleic acid complexes or carbohydrate molecules. Figure 3.3-1 shows an example of PBD entry.

Figure 3.3-1 - Four PBD entries showing HIV-1 Protease enzyme (shown as an α-carbon chain) bound with four drugs (shown as spacefilling models): Indinavir (PDB entry 1hsg), Saquinavir (PDB entry 1hxb), Ritonavir (PDB entry 1hxw), and Nelfinavir (PDB entry 1ohr) (PDB 2000).

The PDB currently contains 25,251 structures (as of 27 April 2004) of which 3731 structures have been determined by Nuclear Magnetic Resonance and 21,520 structures by X-ray diffraction or other methods (RCSG PDB 2004). It is estimated that the PDB will grow to more than 35,000 structures by 2005 due to an increasing interest in structural proteomics (Hendlich et al. 2003).
3.3.2 Cambridge Structural Database (CSD)

The CSD holds bibliographic, crystallographic, chemical and primary numerical data from X-ray and neutron diffraction analyses of organic, organometallics and metal complexes (CSD 2004). The CSD records results of single crystal studies and powder diffraction studies which yield 3D atomic coordinate data for at least all non-H bonds.

The data contained within the CSD is obtained from published data and via private communications. The CSD currently holds 298,097 entries (November 2003, CSD 2004.)

3.3.3 IsoStar

Studies of crystallography data has provided researchers with information on chemical reaction pathways, protein-ligand binding, hydrogen bond geometry, how protein side-chains interact and crystal packing information (Bruno et al. 1997). IsoStar was developed in order to create a centralised knowledge base storing information on intermolecular interactions between proteins and ligands.

3.3.3.1 Development of IsoStar

The database was created based on information obtained from structures contained within the CSD and PDB databases (described earlier) combined with theoretical interaction energy calculations (using the ab initio intermolecular perturbation theory (IMPT)) (CCDC 2003, Bruno et al. 1997). Currently IsoStar is based on 277,066 CSD entries and 8,602 protein-ligand complexes from the PDB. IsoStar contains over 25,805 scatterplots and more than 1,550 theoretical results (IsoStar 2003).

3.3.3.2 Searching for intermolecular interactions in CSD structures

Non-bonded interactions between specified pairs of chemical groups in small-molecule crystals were identified. An intermolecular contact was defined as any contact which is less than the sum of the van der Waals radii (of the two atoms of interest) plus 0.5Å. X-H covalent bond lengths were normalised by moving the H-
atom along the observed X-H vector until the X-H distance is equal to a standard value (Bruno et al. 1997).

3.3.3.3 Searching for intermolecular interactions in PBD structures

X-ray crystallography structures of protein-ligand complexes at less than 2.5Å resolution were searched to identify protein-ligand interactions. A ligand is defined as a peptide of up to 10 residues long or a non-peptide molecule of at least 9 atoms. Complexes containing DNA or RNA or structures marked ‘mutated’ were excluded from the search (Bruno et al. 1997).

SYBYL software was used to extract the ligand from the complex along with any protein residues, water molecules and other chemical entities within 4Å of any ligand atom. Searches were then performed to identify non-bonded contacts between:

- protein residues and ligand molecules
- water and ligand molecules
- water and protein residues

3.3.3.4 Scatterplots and contour maps

Scatterplots show the distribution of contact groups around a central group. A scatterplot is produced by choosing a central group and searching the CSD or PBD for all the molecules which contain this central group. The central groups are overlaid and the position of the contact group is marked. Once all the central groups have been overlaid, a scatterplot is produced which shows all the possible positions of the contact group around the central group (Bruno et al. 1997). Figure 3.3-2 shows an example of a scatterplot showing the distribution of an alcohol OH group around an aliphatic ester central group.

In a scatterplot the central group is shown as a single group to make the plot easier to view. Different scatterplots are produced from the CSD and PDB data.
Each central group can have many scatterplots each showing the interactions between the central group and different contact groups. The number of scatterplots for each central group depends on whether the central group can actually form non bonded interactions with the particular contact group (Bruno et al. 1997).

Contour maps (or density maps) are derived from scatterplots and show the likelihood of finding a particular contact group (or atom within a contact group) at certain points around the central group (Bruno et al. 1997, Rosenfield et al. 1984). The areas where the central group is most likely to be found can be then be identified. Figure 3.3-3 shows an example of a contour map of the same intermolecular interaction depicted in Figure 3.3-2, namely interactions between an alcohol OH and an aliphatic ester.
The IsoStar database can be used to identify fragments, which form similar intermolecular interactions, by comparing scatterplots, or contour maps, of different contact groups. Contact groups which have similar scatterplots around a central group, and hence similar binding properties, could be identified as a bioisostere. These potential bioisosteres can then provide starting points in the lead optimisation stage. Bioisosteric replacements can be introduced in an attempt to optimise the biological activity of the lead compound.

Bioisosteric replacements could be introduced into a scaffold hopping approach. Scaffold hopping involves the identification of isofunctional molecular structures that differ in their backbone structure (Schneider et al. 1999). Bioisosteric replacement within scaffold regions of ligands can lead to identification of such structures. The bioisosteric group will differ in composition but will position the ligand in the same way so to form the necessary intermolecular bonds needed for biological activity.

The bioisostere may form similar interactions but could affect other properties of the molecule which would need to be investigated. Also the effect of a particular bioisosteric replacement may vary between different biological targets.

As well as identifying potential bioisosteres, scatterplots and contour maps can also identify unusual non-bonded interactions between proteins and ligands which
may be of interest to medicinal chemists. IsoStar can also provide detailed information about the nature of interactions. Bruno et al. (1997) explored the nature of a number of non-bonded interactions by analysing the scatterplots produced in IsoStar. For example, the Bruno (1997) study analysed the possible geometries of hydrogen bonds in protein-ligand complexes.

3.3.4 SuperStar database

The SuperStar utilises the information contained within the IsoStar database to generate maps showing interactions sites in proteins. SuperStar uses this crystallographic data to generate composite propensity maps for protein binding sites rather than just for atoms (or functional groups) (Verdonk et al. 1999). These maps estimate the propensity of a given functional group to bind at different positions around a template molecule (i.e. a protein binding site).

The basic methodology behind the generation of a SuperStar map is as follows. A template molecule (i.e. a protein binding site) is broken into structure fragments which are equivalent to central groups defined in IsoStar. A probe atom is chosen from the contacts groups defined in IsoStar. The scatterplots for all the central groups present in the template molecule (i.e. corresponding to a fragment) are overlaid on the relevant section of the molecule. Each scatterplot is converted to a density map and these maps are then normalised. Any overlapping maps are combined. Finally a contour map is produced from all the individual scatterplots which are then displayed. A more in depth explanation of the methodology behind SuperStar is given in the papers by Verdonk et al. (1999) and Verdonk et al. (2001).

3.3.5 BIOSTER database

BIOSTER is a database of bioisosteric compounds which was designed and created by a collaboration between Accelrys and Dr Ujvary of The Hungarian Academy of Sciences (BIOSTER 2004a). The bioisosteres contained within BIOSTER have been abstracted from references published over the last 35 years (BIOSTER 2004b). The latest version, Version 2003.1, contains 10,957 hypothetical ‘transformations’ with 29,443 examples of biologically active molecules including drugs, agrochemicals and enzyme inhibitors (BIOSTER 2004b).
BIOSTER contains compounds or fragments of compounds which have similar molecular shapes, volumes, electron distributions and physical properties. The database has also been extended to include structurally similar atoms, groups or larger fragments, which are interchangeable from a biological point of view.

3.3.6 ReliBase+

Relibase+ is a database search, retrieval and analysis system for protein-ligand complex structures (Relibase+ 2004) and is based on an object-orientated database system (Hendlich et al. 2003). Relibase+ can be used to access structural information from the PDB but can also be extended to search in-house databases. It consists of several software components and modules which provide functions such as a graphical user interface and data validation tools (Hendlich et al. 2003).

Relibase+ has many features including: text, 2D substructure and 3D protein-ligand searching; ligand similarity searching; automatic superimposition of related binding sites to compare ligand binding modes and analysis of superimposed binding sites (Relibase+ 2004).

3.4 Calculating similarities between functional groups

The databases described in the previous section offer a wealth of information on currently identified bioisosteres. They also allow potential new bioisosteres to be identified for specific protein targets. But are there alternative methods for identifying new bioisosteres not based on structural data. Obviously an already identified active compound can be modified, synthesised and then tested for biological activity (as described in the examples above).

Holliday et al. (2003) looked at a method for calculating the degree of similarity between pairs of substituents at the same relative position on a ring system. The identification of bioisosteres relies on physiochemical data rather than analysing structural data. They devised local similarity measures which give an overall measure of how similar one substituent is to another. The calculations also make it possible to ascertain the extent and the location of the similarities and differences
between the two substituents.

Substituents were characterised using physiochemical information calculated from 2D structure diagrams. R-groups were defined in terms of a specific atomic property by a descriptor. The descriptor is calculated as the sum of the values of that particular atomic property of each atom a set bond distance away from the point of attachment of the R-group (e.g. sum of atomic weights of all the atoms one bond length away from the attachment point). R-group descriptors were calculated for seven different atomic properties.

Validation of the similarity calculation was conducted by comparing results obtained from a pre-determined data set containing pairs of bioisosteric functional groups against those results obtained from another data set containing nonbioisosteric functional groups. The BIOSTER database was used to create these two data sets.

The hypothesis was that the pairs of bioisosteric functional groups should tend to score higher similarity scores (using devised measures) than those pairs in the nonbioisosteric data set. This is only true if the similarity measure encodes information that was relevant to the contributions to biological activity provided by these substituents.

The similarity measure was calculated as follows. For each of the functional R-groups in the two data sets, seven R-group descriptors were generated for atoms up to 6 bonds away from the attachment point. The values were standardised using the Z standardisation calculation (gives a mean of zero and a standard deviation of 1).

Similarity scores for each pair of functional groups were calculated using three different similarity coefficients – tanimoto, cosine and Euclidean distance. All the results showed a shift towards higher similarity scores for the bioisosteric data set compared to the nonbiosisosteric set. The atomic weight and molar refractivity descriptors were best at discriminating between the bioisosteres and the nonbioisosteres.

The study concluded that the derived similarity calculation could be used to
identify substituents from a dataset that are most similar to a user-defined query substituent. Therefore it is envisaged that this method could be used to identify potential modifications at the lead-optimisation stage.

3.5 Identifying common chemical replacements in drug-like compounds

Sheridan (2002) looked at a method which extracts one-to-one replacements of chemical groups in pairs of drug-like molecules which all have the same biological activity. The method also calculates the frequency of the replacements in a large dataset of such molecules, namely the MDDR (MDL Drug Data Report) database. The study assumed that the molecules within the same therapeutic class of the MDDR have the same activity. The aim of this method is to systematically identify potential bioisosteres.

Sheridan (2002) used the following methodology to identify fragment pairs. Within a set of molecules with the same biological activity, the molecules were clustered based on their overall topological similarity. Pairs of molecules which differed in only one place were analysed as extraction of replaced groups is computationally expensive process. For each molecule pair, the replaced parts were extracted by identifying the atoms which correspond between the two molecules. This was achieved by identifying the maximum common substructure (MCS - which can be discontinuous) between the two molecules. In the MCS, the paired atoms have the same ‘atom type’ (element and hybridisation state) and the topologically distances between the MCS in one molecule are the same as the corresponding MCS in the compared molecule. Once the MCS has been identified, the bonds between the atoms within the MCS are removed. Atoms with no bonds attached were deleted leaving the ‘fragment pair’. The fragment pair is saved if it is the only fragment pair produced from the molecule pair.

The study found that many of the most common fragment pairs identified were ‘classical’ replacements seen in medicinal chemistry such as the replacement of C within N in an aromatic ring or replacement of O for S (which can occur in aromatic rings, aliphatic rings and aliphatic chains). This is probably not surprising as the MDDR is based on patent information so the identified fragment pairs are probably reflecting what is established medicinal chemistry intuition. The study also identified replacements which were generic, in that they are frequent throughout the
MDDR, and others which were more activity-based replacements i.e. only seen in molecules within one therapeutic class.

Sheridan notes that having a list of fragment pairs is not the same as having a list of defined bioisosteres. Just because groups are often substituted does not necessarily mean that they are physiologically equivalent. Also fragment pairs were only identified when they occur as a one-to-one substitution within molecules. If the molecules differ in regions outside a bioisosteric region then the fragment pair within the bioisosteric region will not be identified. This said, the goal of the study was to devise a method which systematically detected replacements which can then be mined for synthetic ideas.

3.6 Conclusion

Bioisosterism is an important concept which can prove to be extremely valuable in the drug design process. Bioisosteric replacements can be introduced at the lead optimisation or lead generation stage to modify the lead compound with the aim of improving desirable properties or reducing adverse properties. Another important use of bioisosterism is to increase the patentability of lead compounds.

As can be seen there are few methods available for identifying bioisosteres so there is still more research to be done in this area. As bioisosteres can play such an important role in drug design then this provides a rationale for conducting the following project.
4 Methodology

The following chapter outlines in detail the methodology employed during this project along with a description of the developed function. The chapter starts with a brief overview of the methodology which is then described further in the following sections. The methods for comparing ligands, scoring overlap between them and the criteria used for identifying relevant fragment pairs are discussed in detail. This chapter also includes a section describing some of the techniques employed during the development of the function to maximise efficiency and explains the limitations that currently exist with the program.

4.1 Overall methodology

The aim of this project is to identify potential bioisosteres that exist within a set of ligands for a particular protein target. An overview of the methodology employed during this project is shown in Figure 4.1-1 below. The methodology is explained in greater detail in the rest of the chapter.

Each ligand within a dataset will in turn act as a reference ligand which is then compared to all the other ligands in the dataset (query ligand). In order to identify small regions within the compared ligands which could potentially be bioisosteric, the query ligand is split into fragments (query fragments). The potential bioisosteres are identified based on volume overlap between these query fragments and a reference ligand. Regions within ligands that occupy the same space are likely to have the same, or similar, roles. Therefore each of these query fragments is compared to the reference ligand in order to identify a region within the reference molecule which occupies the same space as the query fragment. If a match is found then these fragments are then flagged and saved into a results database if they meet a set of defined criteria.
Select a reference and a query ligand from a dataset of aligned ligands

Split query molecule into fragments

Compare each query ligand fragment with the reference ligand

Score volume overlap

Identify part of reference ligand which best overlays the query fragment

4.2 Software and programming languages used

4.2.1 MOE

Molecular Operating Environment (MOE) has been developed by the Chemical Computing Group (www.chemcomp.com) and is a window based chemical computing molecular modelling program. MOE has a wide range of available applications including Bioinformatic tools (sequence alignment, fold identification), Chemoinformatic tools (pharmacophore, 3D search) and Molecular Modelling methods (molecular surfaces, 3D molecular builders). The MOE interface can be menu driven, command line driven or a combination of both.

4.2.2 Scientific Vector Language (SVL)

The majority of this project utilises MOE software which uses SVL as its command and scripting language. SVL is a vector language which uses vectors as
the primitive unit of operation. As opposed to other programming languages where the primitive data unit is a scalar, vectors can be one of any number of possible data structures built around scalar quantities (MOE Manual 2004). The SVL scripts behind all the built-in MOE functions are available within the MOE documentation. This means that users are able to modify and customize the scripts to fulfill their own requirements.

The rationale behind using a vector language is that it is well suited to solving problems involving intensive computations on large amounts of data. Using vectors to manipulate data allows an operation to be carried out over an entire data set but just using a single instruction (MOE Manual 2004).

4.3 Ligand Dataset

A protein database of X-ray crystallographic structures was clustered based on protein sequence. All the proteins within one cluster were identical in sequence and have a ligand bound. Although the proteins have identical sequences, they can differ in conformation especially within their active site. Different ligands can cause a protein to adopt different conformations. The binding modes of the ligands have also been identified. In order to do this, it is important to understand the nature of interactions between a protein and a ligand. These interactions were described in chapter 3.2.

The proteins within a cluster were aligned by choosing a reference protein and aligning all the other proteins to this protein. The ligands are then extracted from the complexes resulting in a set of aligned ligands.

During the development of the functions described in the following sections, a dataset of 35 ligands for the HIV1 reverse transcriptase inhibitor was used to test the function. The aligned ligands had already been extracted and were therefore ready to use. The results obtained from this dataset are described later.

The developed function was also run on internal Aventis databases but due to confidentiality reasons the results cannot be shown within this report. The function was also run on sets of ligands extracted from the PDB. As these structures are publicly available the results are shown in a later chapter.
4.4 Splitting the ligands into fragments

In order to identify any potential bioisosteres, each of the extracted ligands needs to be broken into fragments by breaking appropriate intramolecular bonds.

To manually split each ligand into fragments would be a time consuming process, especially when large numbers of ligands are being analysed (as will be the case here). Therefore, SVL scripts were written in order to automate and ensure consistency of this process.

There are several ways of splitting a molecule into fragments, each having different rules on which bonds should be broken during the splitting process. Each method will lead to different numbers of fragments being created which could differ structurally.

Whichever method is chosen, it is important to ensure that the fragments created are meaningful and can be compared against other fragments or a reference molecule in order to identify bioisosteres. For example, splitting a molecule down into its constituent atoms would not be constructive, as comparing one atom against another would not yield meaningful bioisosteres. Once one method was chosen, this was used throughout the rest of the project so ensuring consistency when creating fragments and identifying bioisosteric pairs.

4.4.1 Splitting Molecule function

The first part of this project, therefore, involved determining how ligands should be split into fragments i.e. identifying a set of rules for breaking the bonds between atoms within the molecule. Once these rules had been established, a SVL script was developed in order to automate the splitting process.

Two functions were developed in order to conduct this process. Developing these functions was a good introduction to the SVL language and learning how to construct scripts.
Only one of the functions is described here as this function was used in later stages of the project. The function was developed based on learnings gained in developing earlier versions of the function and analysing the results obtained.

The *Splitting Molecule* function produces a set of overlapping fragments for an input molecule. Figure 4.4-2 shows the output from the *Splitting Molecule* program when the example molecule (shown in Figure 4.4-1) is split.

Figure 4.4-1 Example molecule

![Example molecule](image)

Figure 4.4-2 Output from the Splitting Molecule program

![Output molecules](image)

This output is achieved by breaking all the single bonds within the molecule unless they are (the four bonds broken in the example molecule are shown by red lines in Figure 4.4-1):
- A bond within a ring – thus preventing ring structures from being disrupted
- Bonds between terminal atoms

The fragments produced are created by breaking the identified bonds in all possible combinations. This leads to a set of unique but overlapping fragments. In Figure 4.4-2, 14 fragments would be produced by breaking the example molecule by the identified bonds but the output from the function is filtered for fragments containing at least 2 atoms. So in this example, the single nitrogen atom fragment would be excluded from the output.

The example molecule is a relatively small compound and many of the target ligands are larger in size and complexity, hence potentially leading to a far greater number of fragments being created.

4.4.1.1 Function description

In the *Splitting Molecule* function, all single rotatable bonds are identified as breakable bonds. Only rotatable bonds are selected to prevent single bonds within rings being broken hence disrupting ring structures, for example single bonds within hexane. This rule also ensures that bonds connected to terminal atoms are not broken. By selecting just rotatable bonds, only single bonds should be identified, hence negating the need to add in a single bond identifier. In exceptional cases this may not occur, for example double bonds within tautomers may have been identified as being rotatable in order to generate all possible conformations of the molecule. Therefore, breakable bonds are selected on both criteria, bond order and rotatability.

In the *Splitting Molecule* function, bonds are identified by the two atoms making up the bond which are then saved as one element within a vector. The bonds within a molecule are identified using a molecular graph methodology where the whole molecule is described in terms of a molecular graph where the atoms are nodes and the bonds are edges. Therefore a list of edges of the molecular graph refers to all the bonds within a particular molecule.
Once all the bonds in the molecule have been identified and saved into ‘aBds’, the single rotatable bonds are then filtered out and saved into variable ‘bond’. The ‘bond’ variable is a global variable in order to prevent it being reinitialised or overwritten in recursive functions (Script 1 shows the relevant code).

Script 1:

```plaintext
/ local bds = tr xgraph atoms;
local bd = cat bds;
local aBds = split [get [atoms, bd], 2];
local ab = (app aRotatable aBds) and (app border aBds ==1);
bond = aBds | ab;/
```

As the function will need to process large amounts of data, it was important for the code to be as efficient as possible. One of the hardest parts of the code was attempting to prevent large numbers of duplicate fragments being generated. If all the identified bonds are broken in each recursion, this leads to the fragments being duplicated a large number of times. It was therefore necessary to employ a method of keeping track of which bonds have been broken in each iteration of the main loop. Each time a bond has been broken in the main loop, the bond is flagged and not broken again in any following recursive functions. Another global vector ‘bdLoop’ acts as a flag which tracks these broken bonds. ‘bdLoop’ is initialised as a vector of zeros each corresponding to an identified breakable bond.

```plaintext
/bdLoop = rep [0, length bond];/
```

The identified bonds are then looped through and broken in turn. The ‘bdLoop’ variable is updated with a 1 replacing the 0 to reflect that this bond has been cut and should not be cut again. A new global variable ‘toCutBonds’ is created which stores only bonds which should be cut in the recursive function.

The two fragments (‘frag’, ‘frag2’) created from breaking a bond are saved into the ‘fragments’ variable, provided they contain at least two atoms. Each fragment is then passed as argument, along with ‘toCutBonds’, to the recursive function *Splitting Molecule 2* function (termed splitting_mol2 in the code). A flow diagram detailing this process is shown below with the relevant code shown alongside.
The function *Splitting Molecule 2* is identical to the *Splitting Molecule* function but takes two variables, molecule and bond list, as arguments. *Splitting Molecule 2* program splits the fragments by breaking only those bonds specified in the ‘toCutBond’ variable. The bond list is passed as an argument to prevent duplicated fragments being produced. In the same way as the *Splitting Molecule* function, the bonds are looped through, broken and then the produced fragments (consisting of more than one atom) are saved. The fragments produced in each cycle are then sent recursively back to the *Splitting Molecule 2* function to ensure all possible fragments are produced. The program also checks to see whether the bond to be cut is actually present in the fragment. If it is, it continues with the splitting process, otherwise the program moves onto the next loop iteration. This check prevents duplicate fragments being saved because if the bond is not present, then breaking this bond would have no effect and the original fragment would then be resaved.

All the fragments are saved as molecules rather than as SMILES strings so
preserving the 3D coordinates of the fragment. SMILES strings do not contain any 3D coordinate information about the fragment meaning that extracted fragments could not then be overlaid onto a reference molecule as the coordinates, and hence alignment information, has been lost. A filter is applied to the generated fragments, namely one atom fragments are excluded from the output. A global variable ‘fragments’ is used to save all the fragments created during the program and is returned by the function. All the generated fragments created from the Splitting Molecule function are overlaid onto a reference molecule, without modifying the original coordinates, and the overlap scored using the function described in the next section.

4.5 Identifying fragment pairs

The next step in the process is to split a query molecule into fragments using the Splitting Molecule function, and then compare each generated query fragment with a reference molecule. For each comparison, the atoms within the reference molecule which best overlay the query fragment are identified. As the fragment and the reference molecule are already aligned then it is a case of scoring the best overlap between the query fragment and sections of the reference molecule to determine the best pairing of atoms.

In this project, the overlap will be calculated based on the degree to which the two fragments overlap in terms of the volume of their constituent atoms. Fragments with a high degree of overlap will occupy a similar position within the protein's active site and hence are assumed to have a similar role within the ligand. The fragments do not necessarily have to be involved in intermolecular binding but can play other important roles such as linker or scaffold roles. Therefore, we are only interested in looking at the steric properties of the fragments when calculating similarity rather than other properties such as hydrogen bonding properties.

In the Holiday et al. (2003) paper, described in Chapter 3.4, they found that the atom descriptors, atomic weight and molar refractivity, discriminated between the bioisosteric and nonbioisosteric groups best. As both these properties are related to atom volume then the study can help to provide justification for basing the identification of bioisosteres on volume.
4.5.1 Scoring overlap

There are many techniques available for calculating similarity between molecules and are commonly used when aligning molecules and optimising the best superimposition. These techniques use different methodologies for calculating similarity and are based on different molecular properties such as steric, electrostatic and hydrophobic field descriptors.

There are many studies which have looked at the problem of superimposing ligands (both for rigid and flexible ligand alignment) and scoring the similarity between them in order to optimise the superimposition. Only a brief overview is given here of some of these techniques. Lemmen & Lengauer (2000) in their review article provide a more in-depth review of these studies.

One of the earliest techniques is the Carbó method which uses structural properties to calculate similarity using the Carbó index. Carbó originally used quantum mechanically derived electron density as the measured property (Kotani & Higashiura 2002) but the Carbó index can be applied to any molecular property that can be calculated at any point around the molecule. The degree of similarity is measured by aligning the two molecules so to maximise the overlap of the corresponding properties (Bohl et al. 2002). There are some drawbacks with the Carbó method, namely that electron density can be costly to compute and it was discovered that it was not sufficiently discriminatory a property to use in similarity searching (Leach & Gillet 2003).

Later techniques have involved using grid-based similarity calculations. Molecules are surrounded by a rectilinear grid and the chosen property is calculated at each vertices of the grid. This is an approximation as the property value is only calculated at certain points rather than over the whole space. A drawback of these methods is that in order to achieve reasonable computational speed the grids employed tend to be coarse, hence affecting the accuracy of the calculation (Kotani & Higashiura 2002).

Gaussian functions have been utilised to approximate the molecular properties. Good & Richards (1993) describe a method where Gaussian functions are first used to fit the curve of electron density against distance from atom nuclei.
These functions are then inserted into the Carbó index providing an analytical
evaluation of similarity. This leads to a significant reduction in the computational
time required to calculate the overlap between two aligned structures as the
similarity is measured analytically rather than numerically. Grant et al. (1996) also
describe a method for superimposition based on optimisation of van der Waals
overlap again using Gaussian functions.

Klebe et al. (1994) looked at different approaches for structurally aligning
molecules which are based on an efficient overlap optimisation. One method they
studied was an alignment function for the superimposition of two rigid molecules
developed by Kearsley and Smith called SEAL (see Figure 4.5-1 for formula).

Figure 4.5-1 – Similarity score used in SEAL

\[
A_F = -\sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} e^{-\alpha r_{ij}^2} \quad \text{m=no. atoms in first molecule, n= no. atoms in second}
\text{molecule, } r = \text{distance between the atoms and } w_i
\text{weights each distance interaction for a pair of structures}
\]

Klebe et al. (1994) optimised this function by using reference data of
determined crystallographic binding geometries of ligands for a common protein
receptor. They then tested the optimised function against other ligands to establish
whether the function could identify ligand geometries which closely matched
experimentally observed alignment. They found that within the generated
conformers, one geometry could be selected which reasonably matched observed data.

Although the similarity indexes which incorporate Gaussian functions improve
calculation times compared to earlier methods, such as grid-based techniques, they
are still computationally expensive and time consuming (Kotani & Higashiura 2002).
Therefore methods which can reduce this computational time continue to be
investigated.

As the ligands within the datasets, analysed within this project, are already
aligned then it is only necessary to score overlap between them. Computing volume
overlap between two atoms is computational expensive so it was preferable to
devise a scoring equation based on distance between atoms pairs instead. In order
to derive a scoring equation, a simulation was conducted where two atoms were
brought closer together and at set intervals apart the volume overlap of the two
atoms was calculated. This volume overlap was calculated as a percentage of the
overall volume of the two overlaid atoms. The simulation was repeated for atoms
pairs with varying element type. The results from the simulation are shown in Figure
4.5-2.

Figure 4.5-2 Calculating percentage volume overlap between two atoms

An exponential equation (which matched the results graphs was derived. An
exponential equation is needed so that the overlap score drops to zero rather than
produce negative numbers, as would be the case in a linear equation. The function
also needs to drop sharply so the function will score atoms which are particularly
close to each other highly (as they will occupy a very similar space) and penalise
atoms which are further apart. This will help ensure that the best overlap between
fragments is determined.
The scoring equation used within this study to score overlap between two atoms was:

\[
\text{Overlap score} = ke^{-\alpha d^2}
\]

where \(d \) is the distance between two atoms. The parameters \(\alpha \) and \(k \) are both currently set at 1. The derived scoring equation is also depicted in Figure 4.5-2 above (the dark blue line). It is noted that because of time issues and the need to progress with the study, it was not possible to determine whether there is a more appropriate scoring function. Further work would include optimising \(\alpha \) and \(k \) and looking at alternative scoring equations.

The simulation also demonstrated that there was little difference between the different atom pairs when looking at overlay at distances less than 0.4Å. Therefore, a factor based on atom radii was not incorporated into the scoring function at this time.

A SVL scoring function was developed which takes the distance between two atoms an argument and returns the overlap score between them using the above equation.

This scoring equation is then used to identify which reference fragment best overlays the query fragment. The following sections describe the methodology behind scoring a reference molecule against a query fragment and also detail the function which was developed in order to automate this process.

4.5.2 Comparing the molecules and scoring the overlap

Scoring reference molecule sections

As mentioned previously, the best overlap of each query fragment with the reference molecule needs to be identified. In order to do this, the reference molecule is split into sections which are then compared to a query fragment based on the original 3D coordinates. A section is defined as being part of a molecule in which all the atoms within it are connected by ring bonds or multiple bonds.
Sections within a particular molecule are identified by breaking all the non-ring single bonds within the molecule. Figure 4.5-3 demonstrates how an example reference molecule would be split into sections. Four single (non-ring) bonds are identified within the molecule (depicted by red lines) and are broken thus generating 5 sections (labelled 1-5 in the figure).

Figure 4.5-3 – Reference molecule broken into five sections

The segmented reference molecule is then compared with the query fragment. Sections consisting of only one atom are kept because these sections may overlap with the query fragment and therefore need to be retained as part of the reference fragment. If these sections do not overlap with the query molecule then they are excluded from the reference fragment thus ensuring that the smallest reference fragment is identified.

For each identified section, the volume overlap for each atom within the section with each atom in the query fragment is calculated and summed. The sums for all the atoms within the section are added together to create an overall section score.

\[
\text{Overall section score} = \sum_{j=1}^{m} \sum_{i=1}^{n} e^{-(d_{ij})^2}
\]

Where \(n \) = number of atoms in query fragment and \(m \) = number of atoms in the reference section

An average score is calculated by dividing this value by the number of atoms
within the section. This value is used to determine whether the section should be included within the reference fragment. This cutoff value is currently set at 0.5 and was determined by analysing the results gained in test runs. It is being compared to a query fragment shown in orange.

Figure 4.5-4 shows an example of how this process works using the same reference molecule shown in Figure 4.5-3. It is being compared to a query fragment shown in orange.

Figure 4.5-4—Selecting which sections should be included in the reference fragment

As can be seen above, two out of the five sections of the reference molecule score highly enough, compared to the query fragment, to be included in the reference fragment (as indicated by the ticks). If more than one section is selected, then the broken bonds between these sections are rebonded thus creating the reference fragment. In the example above one bond would need to be reconnected generating the fragment pair shown in Figure 4.5-5.
Calculating the average overall score

Once the fragment pair has been identified then an average overall score for the pair needs to be calculated. This score is used to both determine whether the fragment pair should be saved and is also used to rank the pairs in the results database.

An example fragment pair is shown in Figure 4.5-6 with the reference fragment depicted in orange and the query fragment in green. This fragment pair is actually derived from a pair of larger ligands but for simplicity only the values for the fragment atoms are shown.

The distances between each possible atom pairing between the query and the reference fragment are calculated and saved into a matrix (shown in Figure 4.5-7, distances in Å). A full description of the matrix methodology is described in a later chapter.
Using these distances and the scoring equation, a matrix containing the scores for the all the atom pairings is generated (shown in Figure 4.5-8).

To obtain an overlap score for an atom in the reference molecule with the all the atoms in the query fragment, the scores within the relevant row are summed. For example, the score for the Oxygen atom in the reference fragment would be 0.90 (0.45+0.43+0.02+0.00+0.00). The scores for the other reference fragment atoms are also shown in Figure 4.5-8.

To calculate the overall average overlap score, the individual atoms scores are summed, multiplied by two (as the query fragment has the same overlap score with the reference fragment as the columns are summed rather than the rows) and then divided by the total number of atoms in the fragment pair. As can be seen in Figure 4.5-8, an atom will only score highly for atoms closest it which means that the majority of the scores for the atom are close to, if not, zero. Therefore, the summed scores are divided by the mean number of atoms in the fragment pairs.

$$\text{Average overall score} = \frac{2}{m+n} \sum_{j=1}^{m} \sum_{i=1}^{n} e^{-d_{ij}^2}$$

Where m atoms in ref fragment, n atoms in query fragment
So in the example shown above, the average overall score for the example fragment pair would be 0.929. An average score is needed to take into consideration the variation in size of the generated fragment pairs. A cutoff value 0.7 has been incorporated into the function which means that all fragment pairs scoring below this number are excluded from the results database. This was determined by analysing the results from test runs. It may be decided that a cutoff value should not be included and so all the fragment pairs are saved. It would then be up to the end user to determine which fragment pairs should be investigated further. If this is the case than the end user should be aware that this is the case and that low scoring fragment pairs will not have a high degree of volume overlap.

4.5.3 Defining bioisosteric fragments

Any developed function must be able to identify potential bioisosteric fragments which exist between two compared ligands. It is important to clearly determine what is meant by a potential bioisosteric pair and how they have been defined within this study. This is important for future users of the results database as bioisosteres can be defined in different ways. As already discussed, the fragment pairs are scored based on their volume overlap. A set of criteria was chosen in order to decide which fragments should be compared and which identified fragments should be saved into the database as potential bioisosteres. These criteria were often chosen after analysing the output gained in initial test runs and determining which pairs should be excluded from the results database. The implementation of these criteria is described in the section detailing the scoring function.

4.5.3.1 Criteria determining selection of bioisosteric fragments

- Size of query fragment

Only query fragments containing 20 atoms or less are overlaid onto a reference molecule. Fragments larger than this (as shown in Figure 4.5-9) are likely to constitute a large part of the query fragment and it is questionable whether
relevant bioisosteres would be identified. If a corresponding reference fragment is identified, in order for it to score highly enough to be saved then it is also likely to be a large fragment. In this case the identified pair may be defined as analogues rather than bioisosteric. The function should identify small sections of the two molecules which occupy the same space and are therefore highly likely to have the same, or similar role within the ligand. Large fragments are likely to contain sections which have more than one role.

Figure 4.5-9 Example of a large fragment

a) Query molecule b) Query fragment >20 atoms

The query fragment, shown in Figure 4.5-9, would be produced from the Splitting Molecule function but only differs from the query molecule by one fragment (C₃H₈). It is more constructive to look for reference fragments that overlap smaller sections within this query fragment. This size cutoff value was built into the scoring function rather than the Splitting Molecule function because the Splitting Molecule function may be used to generate fragments for other functions.

• Retaining reference fragment structures

It is important that the non-rotatable bonds within the reference molecule are not broken when the reference fragment is generated. For example, ring structures or multiple bonds within the reference molecule should not be broken otherwise meaningless fragments are created (see Figure 4.5-10 where the reference fragment contains a broken ring structure). Terminal atoms are allowed to be eliminated from the reference fragment, if they do not score a high enough overlap score, as this does not disrupt the structure. By allowing terminal atoms to be
cleaved, it enables the smallest possible overlap reference fragment to be identified. By using the methodology described in chapter 4.5.2, where sections of the reference molecule are compared with the query fragment, this ensures ring structures and multiple bonds are not disrupted.

Figure 4.5-10 Broken reference fragment

1) Reference molecule 2) Reference fragment

- **Size of reference fragment**

 Only reference fragments containing more than one atom are saved into the database, along with the appropriate query fragment.

- **Smallest fragment pair saved**

 As all possible fragments from a query molecule (provided that they are less than 20 atoms in size) are compared against a reference molecule, it is possible that some fragments pairs produced are actually the same as another fragment pair but differing in additional functional groups. For example, Figure 4.5-11 shows two such fragment pairs.

Figure 4.5-11 Similar bioisosteric pairs

Pair A

<table>
<thead>
<tr>
<th>Reference</th>
<th>Query</th>
</tr>
</thead>
</table>

Pair B

<table>
<thead>
<tr>
<th>Reference</th>
<th>Query</th>
</tr>
</thead>
</table>
The smaller fragment pair (i.e. Pair A) is of greater interest because it shows the smallest section of the two molecules which are potentially bioisosteric. Although Pair B is also potentially bioisosteric, no more information is gained from this pairing as they only differ from Pair A in terms of a methyl group (which is identical in both fragments). If presented with Pair B, it is likely that a chemist would ignore the additional methyl groups and only look at the rest of the fragments i.e. that depicted in the top pairing.

It is also possible for two query fragments (from the same query molecule) to produce the same reference fragment (when compared to the same reference molecule), for example the fragment pair in Figure 4.5-12 could be identified rather than that shown in Figure 4.5-11 above. Again in this case, Pair A would be more helpful.

Figure 4.5-12 Same reference fragment produced

![Reference and Query Fragments](Image)

Therefore the function identifies the smallest fragment pairs within the molecule and then ignores any further comparisons with query fragments which contain the identified query fragment as a substructure, i.e. exclude Pair B in Figure 4.5-11 and the pair in Figure 4.5-12 if Pair A in Figure 4.5-11 has already been identified as a bioisosteric pair.

- **Identical fragment pairs identified and removed**

It is possible for the query fragment and the reference fragment to be identical especially if the ligands in the dataset have structurally similar regions to each other. These pairs are obviously not bioisosteric as substituting one fragment for the other would have no effect on the ligand’s activity or other properties. Therefore these fragments are identified based on 3D identity and filtered out.
• Smallest query fragment saved

Once the fragment pair has been identified, any terminal atoms in the query fragment are checked to ensure they score highly against the reference fragment. Any terminal atoms are scored against the each of the reference fragment atoms and the scores summed. If the resulting sum is below 0.5 (this value corresponds to a distance of 0.8Å) are removed from the query fragment. This cutoff value was determined empirically by looking at the results of initial test runs. This ensures that the smallest fragment pair is produced. It also removes fragment pairs that differ only by a terminal atom in the query fragment. In Figure 4.5-13, the fragment pair would be identified by the function but they only differ by the terminal atom in the query fragment.

Figure 4.5-13 – Scoring terminal atoms in the query fragment

Reference Query Aligned fragments

This terminal atom scores 0.122.

The terminal carbon in the query fragment only scores 0.11 when compared against the reference fragment and therefore would be removed from the query fragment. This leads to the two fragments being identical and therefore excluded from the results database. If bonds to terminal atoms were broken when the query molecule was split into fragments then the fragment pair above would still be produced. This would occur as the fragment pair without the terminal atom would be not saved (as fragments are identical) and the next query fragment compared would have the terminal atom included thus generating the above fragment pair. This is why the terminal atoms in the query fragment are scored and excluded at this stage rather than at the Splitting Molecule function stage.

• Disconnected reference fragments are removed

In some cases, disjointed reference fragments (See Figure 4.5-14 below for an example) were identified. This occurs when the sections of the reference molecule
that scored highly enough to be part of the reference fragment were not all connected together within the reference molecule. The sections in between the selected sections did not score highly enough and were therefore excluded from the reference fragment. In Figure 4.5-14, the produced reference fragment is disconnected because the N-C-O section connecting the two selected sections was excluded from the reference fragment. These fragments are identified and screened out of the results database.

Figure 4.5-14 Disconnected reference fragment

a) Reference molecule

b) Disjointed reference molecule

4.5.4 Scoring function description

The Score Fragments function was developed to identify bioisosteres from a given ligand dataset based on the criteria described above. The names of the ligand database and the database into which the results are stored are passed as arguments to the function. The flow diagram shown in Diagram 1 gives an overview of the Score Fragments function with the processes described fully underneath.
Diagram 1 Generating fragment pairs

1. Set Reference molecule
2. Identify breakable bonds
 Determine sections (as explained in 4.5.2)
3. Set as Query molecule
4. Calculate distance matrix for reference and query molecule
5. Calculate scoring function matrix for reference and query molecule
6. Split query molecule into fragments
7. Compare query fragment with reference molecule
8. Score overlap for each reference section
9. Reference fragment identified
 - Fragment <2 atoms
 - Discard reference fragment
 - Fragment =>2 atoms
 - Calculate overall overlap score for reference fragment
 - Score <= 0.7
 - No
 - Score > 0.7
 - Do the fragment pair meet set criteria
 - Yes
 - Save fragment pair into database
 - Move on to next query molecule
 - No
 - Move on to next reference molecule
10. Whilst still query fragments loop
11. Whilst still ligands in query dataset loop
12. Whilst still ligands in reference dataset loop
1. The ligands are extracted from the ligand database. The relevant database is passed as a parameter to the function. The ligands are read in from the appropriate database field and saved into a variable 'molecules'. This variable holds the entry keys for all the entries in the database.

The ligands are extracted as entry keys and therefore need to be converted back into molecular structures in order to access the 3D coordinate data. A function performs this process on both the query and reference molecule. The molecules are also stripped of hydrogen atoms. Hydrogens need to be stripped from the molecule in order for the Splitting Molecule function to identify the correct bonds to break. If hydrogens are attached then these are seen as the terminal atoms meaning that the bonds to the actual terminal atoms (non hydrogen atoms) are broken (as shown in Figure 4.5-15). Steps 2-14 are repeated for each molecule in the ligand database.

Figure 4.5-15 – Stripping hydrogens

2. The breakable bonds within the reference molecule are identified. The code is similar to that found in the Splitting Molecules function but in this case bonds to terminal atoms are also identified as being breakable. This variable is then used to unbind all the relevant bonds creating a fragmented molecule.

All the molecule numbers for the each of the reference molecule atoms are saved. This variable is used to identify individual sections within the reference molecule as all the atoms in one section of the molecule will have the same molecule number (detailed methodology and definition of a section explained in chapter 4.5.2).

3. A query molecule is extracted from the ligand database in the same way as the
reference molecules are. The reference and the query molecules come from the same database. Again hydrogen atoms are stripped from the molecule. Steps 5-14 are repeated for each molecule in the ligand database. Comparisons between identical ligands are excluded at this stage.

4. A distance matrix is computed for the selected reference and query molecule and contains distances between each atom in the reference molecule and each atom in the query molecule (see following section for a detailed explanation of the methodology).

5. An overlap score matrix is computed for the selected reference and query molecule using the distance matrix generated in Step 4 and the scoring equation (explained in 4.5.1).

6. Matrices comparing atoms within the reference and query molecules are created. Each atom in the reference molecule is compared to the closest atom in the query molecule. One matrix shows whether the paired atoms have the same element type and the other shows whether the paired atoms have the same geometry (e.g. sp², sp³). These matrices are used later to determine whether the reference and the query fragments are identical.

7. The query molecule is then split into fragments using the previously defined Splitting Molecule function. The ‘fragment’ variable is sorted in increasing size order to ensure that the smallest fragments are overlaid first. Each fragment is tested to make sure it does not contain an already saved query fragment as a substructure. This ensures that the criteria regarding the smallest fragment pair being generated is met. Fragments containing more than 20 atoms are filtered out at this stage. The relevant query fragments are then looped through and aligned with the reference molecule.

8. A matrix containing the scores for just the query fragment atoms compared to the reference fragment is generated. This means that only the scores corresponding to the query fragment are extracted from the overall score matrix. This then means that just the query fragment can be compared to the reference ligand.
9. For each reference molecule section, the overlap of each atom with all the atoms in the query fragment is calculated. The methodology behind this is explained in chapter 4.5.2. Only sections with an averaged score of more than a specified value (0.5) are included in the reference fragment. For selected sections, the appropriate molecule number is saved and these will be used to generate the appropriate reference fragment (in step 10). The molecule numbers corresponding to the selected sections are identified along with the sum of all the scores for all the atoms in the selected sections.

10. The fragment within the reference molecule which matches the query molecule is then identified. The relevant sections of the reference molecule are selected using the molecule numbers saved in Step 11.

11. Once the complete reference fragment has been identified, then an average score is calculated. See chapter 4.5.2 for an explanation behind this methodology.

12. A cutoff value is included to filter out only the highest scoring fragment pairs. Only fragment pairs with an overall average score (as calculated in Step 11) of over 0.7 are saved into the results database. This cutoff value was chosen based on results obtained in test runs. Also reference fragments containing less than 2 atoms are filtered out.

13. Fragment pairs which contain identical fragments, in terms of atom type and geometry, are filtered out using the matrices generated in Step 6.

14. The fragment pairs which satisfy all the criteria (as specified in chapter 4.5.3.1) are then saved into a database (described below) along with the original reference and query molecules and their average overlap score.

4.5.5 Development and modifications of the function

The Scoring Fragments function underwent many modifications to increase its efficiency and correct errors discovered during its development.
4.5.5.1 Retaining reference fragment structure

As mentioned in the criteria section, it was important to ensure that structures within the reference fragment were not disrupted, e.g. ring structures or double bonds. Originally the overlap score was calculated for each atom in the reference molecule against each atom in the query fragment (within 2.5Å) and all the scores were summed together for each reference molecule atom. Reference atoms with a sum score over 0.5 were then identified as being part of the reference fragment. This was repeated for each reference molecule atom. In order not to produce disconnected fragment (one of the criteria described above), it then meant that once these atoms were identified it necessary to ascertain all the other atoms in same section of the reference molecule.

As whole sections had to be included in the reference fragment, the methodology was changed so that the overlap score was calculated for each reference molecule section instead (as explained in chapter 4.5.2). This simplified the function and ensures that the ring structures or multiple bonds within the reference molecule are not disrupted.

4.5.5.2 Matrix methodology

The overlap between each atom in the reference molecule and each query fragment atom can be calculated each time a new query fragment is compared. However, this methodology would be inefficient, as the same overlap score would be repeatedly calculated because the same atoms will keep appearing in the query fragments. If a different overlap scoring equation is utilised which is more time consuming than the current scoring equation, then this will slow the program down unnecessarily. Therefore, a more efficient method is to calculate the overlap scores once for all possible pairings of atoms between the reference and query molecule. Once these have been calculated, the scores can be accessed within each query fragment loop.

In order to implement this methodology, matrices were utilised within the
function. Matrices in SVL are represented by a nested vector.

\[
\text{Matrix} = \begin{bmatrix} \text{abcd} \\ \text{efgh} \\ \text{ijkl} \end{bmatrix} \quad \rightarrow \quad \text{becomes a vector of rows} \quad m = \begin{bmatrix} [\text{a,b,c,d}] \\ [\text{e,f,g,h}] \\ [\text{i,j,k,l}] \end{bmatrix}
\]

Therefore an \(r \times c \) matrix has \(r \) (number of rows) elements each of which is length \(c \) (number of columns). Row \(i \) can be extracted using the notation \(m(i) \) and column \(j \) can be extracted similarly from the transformed matrix.

In the *Score Fragments* function, matrices are used to show all the possible pairings of reference and query molecule atoms. For example, if the reference molecule has 4 atoms \(\text{(a,b,c,d)} \) and the query molecule has 4 atoms \(\text{(e,f,g,h)} \) then all the possible pairing are shown in the matrix below (Figure 4.5-16).

Figure 4.5-16 Comparison matrix

\[
\begin{array}{cccc}
\text{Ref atoms} & \text{Query atoms} \\
\text{Ref atoms} & \text{ae} & \text{af} & \text{ag} & \text{ah} \\
\text{a} & \text{be} & \text{bf} & \text{ag} & \text{ah} \\
\text{b} & \text{ce} & \text{cf} & \text{cg} & \text{ch} \\
\text{c} & \text{de} & \text{df} & \text{dg} & \text{dh} \\
\text{d} & \end{array}
\]

This matrix structure can then be used to represent pairings of different features or properties between the atoms of the two molecules. Several matrices are created during the scoring function.

- **Distance matrix** - contains all the distances between each of the atoms in two molecules. This matrix is only generated once for each reference and query molecule pairing.
- **Scores matrix** – the distance matrix is then used to create an overlap score matrix (as in Figure 4.5-17 below) that contains all the overlap scores for all the atom pairs. Originally, the scores for atom pairs less than 2.5Å apart were calculated which involved filtering out these distances from the distance matrix. It is not necessary to do this as the score value for atoms over 2.5 Å is actually
close to, if not, zero (see graph in Figure 4.5-2 showing the scoring function).
This said if a more computationally expensive scoring equation were
incorporated then it would be beneficial to include a filter. This would ensure
that only relevant scores are calculated. This matrix is only generated once for
each reference and query molecule pairing.

Figure 4.5-17 Score overlap matrix

<table>
<thead>
<tr>
<th>Reference atoms</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.9</td>
<td>0.0</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>b</td>
<td>0.0</td>
<td>0.3</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>c</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- **Element matrix and Geometry matrix** – in the Element matrix a 1 represents
cases where the atoms in the pairing have the same element and a 0 when the
atoms differ in element type. The Geometry matrix is the same but compares
the geometry of the two atoms instead e.g. ‘sp2’, ‘sp3’. These matrices are only
generated once for each reference and query molecule pairing.

- **Query fragment matrix** – this matrix shows which atoms of the original query
molecule are part of the query fragment. This matrix can then be used to select
values from other matrices which are only relevant to the query fragment.

- **Matching fragment atoms matrix** – this matrix shows which atoms of the original
molecules are part of a reference and query fragment. This matrix is used to
extract information from other matrices relating to just the reference and query
fragment atoms.

Utilising the matrices within the function

Identifying identical fragment pairs

The function calculates identity between fragment pairs based on 3D identity.
Using the Match Fragment Atoms matrix and the Distance matrix, a matrix is
generated which contains only the distances between the atoms contained within
the two fragments. For each reference fragment, the closest atom to it in the query
fragment is determined by selecting the minimum distance in each row of the matrix. The Element and Geometry matrices are used to determine whether the selected atom pairs are identical in terms of element type and atom geometry (e.g. sp², sp³).

Scoring the reference molecule sections

The Scores matrix is multiplied by the Query Fragment matrix to generate a matrix which contains overlap scores for the reference molecule and just the query fragment atoms. Using this generated matrix, rows corresponding to reference atoms in the same section can be extracted easily. The sum of these rows gives an overall overlap score which, when divided by the number of atoms in the section, determines whether the section is included in the reference fragment.

4.5.6 Adding attachment points

Once the correct fragment pairs had been identified and met the specified criteria, attachment point labels were added to the fragments. These labels indicate where the fragment has functional groups or atoms attached when part of the original molecule. An example is shown in Figure 4.5-18, where three attachment points have been indicated. The orange fragment has two attachment points whereas the green fragment has only one.

Figure 4.5-18 – Fragment pair with attachment point indicated

4.5.7 Results database structure

MOE allows many different types of molecular descriptors to be saved within a database. Molecules can be saved along with their corresponding 3D coordinates.
This is important for this study as conserving the 3D coordinates of the ligand fragments is important in order to preserve the alignment data. A similar ligand could have different conformations depending on which protein it is bound to. Only fragment pairs which satisfy the criteria described previously are saved into the database. One results database is created per target protein. The results database has seven fields:

- **Pair_id** – a unique number which can identify each pair of fragments
- **Reference_molecule** – molecule which acted as reference onto which the query fragments were overlaid.
- **Query_molecule** – the complete molecule with which the query fragment originated from.
- **Query_frag** – query fragment which was overlaid on the reference molecule
- **Ref_frag** – corresponding fragment within the reference molecule which the Query_frag matched to
- **Score** – average overlap score associated with the fragment pair
- **Aligned_Frags** – the reference and query fragment are aligned and displayed

If the ligands within the test dataset are structurally similar to one another then it is likely that the same fragment pairs will be identified in different ligands. All the fragment pairs are saved meaning so that it is possible to trace all the ligands which contain a particular fragment pair.

4.5.8 Limitations with the scoring function

4.5.8.1 Repetition

There is repetition in the creation of the overlap score matrices, for example when molecule A is compared to molecule B, a score matrix is produced but this is the same matrix created when molecule B is compared to molecule A. Therefore the same matrix has been created twice. At present a method for preventing this duplication of matrices has not been devised but it is not necessary to do currently as the function is executing rapidly.
Comparing molecule A with molecule B is not the same as comparing B with A because different bonds are broken within the query molecule compared to the reference molecule. Different fragment pairs can be generated from the two comparisons as shown in the example below. Figure 4.5-19 shows two ligands (A and B) aligned and figures Figure 4.5-20 and Figure 4.5-21 shows fragment pairs identified from these aligned ligands.

Figure 4.5-19 - Aligned ligands

![Aligner ligands](image1)

Figure 4.5-20 - Fragment produced when ligand A is the reference molecule and ligand B is the query.

![Fragment produced when ligand A is the reference molecule and ligand B is the query](image2)

Figure 4.5-21 - Fragment produced when ligand B is the reference molecule and ligand A is the query.

![Fragment produced when ligand B is the reference molecule and ligand A is the query](image3)

As can be seen in Figures Figure 4.5-20 and Figure 4.5-21, different fragment pairs are identified by the two comparisons. In Figure 4.5-20, ligand B is the query.
molecule and the query fragment generated will not have the terminal nitrogen atom removed. When compared to ligand A, this nitrogen overlaps with the oxygen atom in ligand A and hence is included in the reference fragment generated. Another oxygen atom is also identified as it overlaps the query fragment. When the roles are reversed and ligand A becomes the query molecule, the query fragment in Figure 4.5-21 is generated and compared to ligand B. In this case, the oxygen atoms in ligand A are cleaved as they are not terminal atoms. When this fragment is compared to ligand B, the terminal nitrogen is excluded from the reference fragment, as it does not overlay the query fragment.

4.5.8.2 Eliminating identical fragment pairs

Not all identical fragment pairs are identified and extracted from the results. As the similarity measure is based on matching reference and query atoms which are closest to each other, there are a few cases where the method fails. In these cases, the two fragment pairs are identical in terms of their 2D structure but are not closely aligned. This means that the atoms of one fragment are not matched with their equivalent atom in the other fragment. Figure 4.5-22 shows such an example. As the identity measure is based on 3D information, it means that identical fragments are excluded unless they have different orientations.

Figure 4.5-22 – Identical fragment pair

![Diagram showing the nitrogen closer to the carbon in the other fragment rather than the equivalent nitrogen.](image)

This nitrogen is closer to the carbon in the other fragment rather than the equivalent nitrogen.

This does not occur frequently and introducing more complex identity measures may slow the function down, which would be more disadvantageous than leaving these pairs in the database.
4.5.8.3 Extracting the correct ligand

The ligands, along with their protein, are extracted from the PDB file of protein-ligand complexes from the PDB. Unfortunately the PDB file does not contain bond order information, or atom geometry, only connectivity data. Therefore when the ligands are extracted, the bond orders and hence geometry of the atoms within the molecule need to be determined. Bond orders within the ligand are determined based on the distance between two atoms. This approximation can result in some bonds being assigned the wrong bond order. As hydrogen atoms are not seen in an X-ray structure then they cannot be used to help establish correct bond order. The ligand in Figure 4.5-23 (part of the HIV1 dataset) has been depicted incorrectly with the double bond attached to the ring rather than within it.

Figure 4.5-23 Incorrect ligand structure drawn

Without 2D structural information (the element type and geometry of each atom) then it is not possible to determine computationally whether the ligand has been drawn correctly. The ligands could be visually checked to ensure the correct conformation has been drawn but this is obviously time consuming especially for large ligand datasets.

Currently this problem has not been resolved but there are avenues that can be explored. Geometry information is available for structures within the PDB. This information is contained within files separate to the main PDB file. This information would then need to be extracted for each ligand using the unique code assigned to
the ligand within the PDB and can then be used to ensure the ligand has the correct geometry.

Similarly when analysing internal Aventis protein-ligand complexes, the 2D information for each ligand would need to be checked to ensure that the ligands from the X-ray structures are depicted correctly. The 2D information for these structures is readily available and is stored within a Structural database. This information can then be extracted and matched to the relevant ligand in the X-ray crystallography database via the unique Aventis ID number. The element and geometry information can then be matched against the extracted ligand to ensure that the correct conformation has been depicted. This function has not been written, as the ligand will be corrected before the function, described in this report, is run.
5 Results

In the following section, some examples of the fragment pairs identified are shown. The examples have been identified from publicly available ligand structures. The *Scoring Fragments* function described within this thesis was run on internal databases but for confidentiality reasons the results cannot be shown here.

During the development of the scoring function, a dataset of HIV ligands was used to help refine the function and decide the criteria for determining the bioisosteric pairs. Some examples of identified fragment pairs with this ligand dataset are shown in Figure 4.5-1. The ligands they were extracted from are shown alongside with the bioisosteric region highlighted with a dashed square.

Figure 4.5-1 Examples of some of the bioisosteres generated from the HIV1 reverse transcriptase ligand database
The *Score Fragments* function was run on ligands extracted from protein-ligand complexes from the PDB. All these structures are publicly available allowing the results to be shown here. Table 5-1 shows the ligand datasets and the number of ligands they contain. The number of fragment pairs identified varies enormously between the different ligand datasets. The number of generated fragment pairs will obviously depend on a number of factors including the number of ligands within the dataset and whether the ligands all bind to the same active site within the protein (and hence occupy a similar space). The number of unique fragment pairs identified will depend on the diversity amongst the ligands. A set of structurally similar ligands is likely to produce greater number of non-unique fragment pairs than set of structurally diverse ligands.

Table 5-1 – Ligand datasets

<table>
<thead>
<tr>
<th>Protein target</th>
<th>Number of ligands</th>
<th>Number of non-unique fragment pairs identified (scoring over 0.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ache</td>
<td>63</td>
<td>125</td>
</tr>
<tr>
<td>Beta-glucosidase</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>cdk2</td>
<td>32</td>
<td>702</td>
</tr>
<tr>
<td>cdk4</td>
<td>12</td>
<td>136</td>
</tr>
<tr>
<td>Factor XA</td>
<td>20</td>
<td>347</td>
</tr>
<tr>
<td>HIV-1 protease</td>
<td>78</td>
<td>5837</td>
</tr>
<tr>
<td>mao</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>mmp13</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>mmp3</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>pde4</td>
<td>12</td>
<td>68</td>
</tr>
<tr>
<td>Tyrosine kinase</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Tyrosine phosphatase 1b</td>
<td>33</td>
<td>585</td>
</tr>
</tbody>
</table>

Not all of the fragment pairs identified above are shown in the results section but some examples from several of the above dataset tested are included.
5.1 cdk2 ligand dataset

Some examples of fragment pairs identified within this ligand dataset are shown in Figure 5.1-1. The fragment pair is shown on the left with the ligands the pair were derived from shown to the right of the fragment pair. The reference ligand is always shown in purple with the query ligand in orange.

Figure 5.1-1 – Identified fragment pairs from the cdk2 ligand dataset
5.2 cdk4 ligand dataset

Figure 5.2-1 shows some examples of the fragment pairs identified in the cdk4 ligand dataset.

Figure 5.2-1 Identified fragment pairs from the cdk4 ligand dataset
5.3 Factor Xa ligand dataset

Figure 5.3-1 shows some examples of the fragment pairs identified in the Factor Xa ligand dataset.

Figure 5.3-1 - Identified fragment pairs from the Factor Xa ligand dataset

Score = 0.95

Score = 0.87
6 Conclusions

The concept of identifying potential bioisosteres via structural data has been shown to work as fragment pairs that occupy the same space within a pair of aligned ligands have been identified (as seen in the Results chapter above). This means that potential bioisosteres can be identified using X-Ray crystallography data as a start point. These structures may not have explicit activity data associated with them but rather activity has been derived indirectly from analysing their binding mode.

The Scoring Fragments function can be applied to different sets of ligands as demonstrated in the Results chapter where the function was tested against different ligand dataset sets. The function was also run against both external and internal ligand datasets and fragment pairs were identified in both cases.

As the Scoring Fragments function identifies potential bioisosteres in terms of the space they occupy within the protein, the resulting fragment pairs may not necessarily be involved in intermolecular binding but can have other roles such as being part of the scaffold region or a linker. Databases such as IsoStar can only provide information regarding functional groups which make the same or similar intermolecular interactions. Identifying potential bioisosteres within other regions could be important as they could have an impact on other properties without having a detrimental effect on the binding affinity (as they are not involved in making intermolecular bonds).

The Scoring Fragments function will analyse a ligand data set quickly, a ligand dataset of 81 compounds was analysed in less than 5 minutes with approximately 1500 fragment pairs produced. The time taken for the program to run obviously increases with the size of the ligand dataset but more importantly it increases with complexity of the ligands. If the ligands contain long chain sections (comprising of single bonds) then the Splitting Molecules function will generate a large number of fragments, all of which need to be compared to the reference molecule. This said, it could be possible for the Scoring Fragments function to be run as an online program which is run when necessary ensuring the most up-to-date results are obtained. The function could be rerun when a new ligand, or ligands, is entered into the ligand dataset. If the function can be run when needed then this may enable the user to
choose different settings, such as specify which cutoff values are incorporated, to refine the output for their needs.

The Scoring Fragments function is generating information which would then be investigated further. The next step is to determine whether the identified fragment pairs are useful bioisosteres. As previously discussed, it is assumed that because all the ligands within a dataset bind to the same target protein they have the same biological activity therefore replacement of one fragment for the other within a pair should not alter the activity significantly. It is not possible to investigate whether a fragment replacement alters the degree of activity, as activity data is not readily available in publicly available structures (i.e. those from the PDB). What needs to be established is whether replacing one fragment with the other alters other properties such as solubility, toxicity or ADME properties. This will determine whether the bioisosteres would be useful to be incorporated during the lead generation, or optimisation, stage. The main aim is to identify bioisosteres which will improve the properties of a lead compound. If the bioisostere does not have any effect then there is nothing to be gained from incorporating them into a lead compound. Similarly if the bioisostere causes a reduction of a desirable property then this is also not a valuable bioisostere.

As property data is not readily available from PDB structures, then is it not possible to easily determine this from the datasets where the ligands were extracted from the PDB (as shown in the Results section). Instead the fragment pairs would have to be compared against a database of molecules where property data for these molecules was more easily available.

For each unique fragment pair, the database would be searched to find pairs of molecules that only differ from one another by that fragment pair. If they differ in other regions outside this fragment pair then they cannot be used to establish what effect, if any, this fragment replacement would have as any change noted could not be attributed to just the fragment pair replacement. The molecules do not have to have activity against the same protein target, as the ligands the fragment pair was identified from, because the property data being looked at, such as solubility or toxicity, is not dependant on the molecule’s activity towards a particular protein target.
Once pairs of molecules have been identified for a particular fragment pair, the property data for the two molecules would be compared to establish which property, or properties, if any, are altered between the two molecules and the ΔP_i will then be determined (where P_i is the altered property). These ΔP_i values can then be used in further statistical analysis to determine whether the change is significant. Also the statistical analysis can be used to compare bioisosteric pairs. The change in property can then be attributed to the replacement of one fragment for the other. It may be the case that no property is significantly changed between the molecule pairs. In this case the bioisosteres would not be deemed useful, as the replacement would provide no improvement during a lead generation stage. It is important to note that this validation process is dependant on the content of the molecule database and is reliant on data being available for molecules which only differ by the fragment pair being investigated. If only a small number of molecule pairs are identified for a particular fragment pair then the statistical data may not be sufficient to draw any firm conclusions.

If the fragment pair is found to cause an alteration in the properties between the two molecules being compared then this pair, they can be flagged as being a potentially interesting bioisostere. These bioisosteres can then be saved into a separate database. It is important to record the replacement this relates to – i.e. which fragment is being replaced with the other fragment in order to see the change. Several factors could be taken into consideration when analysing the data from the fragment pairs, such as:

- The magnitude of change of the particular property (ΔP_i)
- The distribution of the magnitude between molecule pairs – do some molecule pairs exhibit a greater change in property than others?
- The number of the molecule pairs the data has been derived from
- The distribution of alteration within the molecule pair dataset – did all the molecule pairs exhibit a change in the particular property or only a subset.

If the replacement causes a change in a certain property in only a subset of the molecule pairs then it may be interesting to try and determine why this is occurring. Can a common feature amongst the molecules in the subset be identified which is not found in the molecules where no change is observed? These would only be observations at this stage because it would not be possible to confirm this
without further investigation.

If pairs of molecules cannot be identified which only differ in terms of a particular fragment pair then is it obviously not possible to establish what effect this replacement would have. These fragment pairs should not be discarded because it may not mean that the replacement does not have an effect but that appropriate molecules have not been synthesised and tested yet. These fragment pairs could be investigated again at a later date when the database is populated with more molecules. Indeed, these fragment pairs may prove to be especially interesting if they have not been considered as useful bioisosteres before.

This project represents the beginning stages of a process in which the ultimate aim is to identify bioisosteric replacements which will give medicinal chemists ideas on how to improve and optimise a lead compound.
Bibliography

Access Excellence @ National Health Museum [Accessed 14th May]

Library of Information about Nonbonded Interactions” J. Comp. Aid. Mol. Des. 11, 425-537

http://www.ccdc.cam.ac.uk/products/csd/information_content/ CCDC
[Online][Accessed 14th May]

IsoStar (2003) “IsoStar”

